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Abstract

This is a numerical investigation of the coupled laminar ¯ow and heat transfer in the space between a pair of
disks attached to a hub rotating about a vertical axis in a ®xed cylindrical enclosure. A temperature variation is
imposed in the ¯uid by setting the disks at di�erent uniform temperatures, the temperature of the bottom disk being

higher than that of the top disk. The Boussinesq approximation is used to characterize buoyancy forces in the
momentum conservation equations.
The di�erent types of interdisk ¯ow that arise as a function of angular velocity are described. At low Reynolds

numbers the ¯ow is primarily driven by gravity-induced buoyancy. As the Reynolds number increases, free

convection yields to centrifugally-induced buoyancy. At su�ciently high Reynolds numbers, convection patterns
induced by the strong shear at the enclosure wall dominate the interdisk ¯ow and heat transfer but centrifugal
buoyancy continues to in¯uence the 3-D ¯ow structure with respect to the isothermal case. One of the e�ects of

buoyancy is the appearance of a new transition in the bifurcation diagram previously investigated by the authors for
the isothermal ¯ow case. Here, centrifugal buoyancy favors the generation of a 3-D ¯ow which features a strong
breaking of its symmetry properties with respect to the interdisk midplane, as in the isothermal case.

Heat transfer rates are calculated for a range of Reynolds numbers and interdisk spacings. Special attention is
paid to the high Reynolds number forced convection regime which is of practical interest. It is shown that the scales
derived from heat and mass transfer analyses of the freely rotating disk apply to the present problem. In many of

the present cases, 2-D (axisymmetric) and 3-D calculations yield very similar values for the overall heat transfer
rates. This is especially the case for those ¯ows with a wavy 3-D structure, meaning ¯ows which, on average, are
symmetrical with respect to the interdisk midplane. However, examples are also provided where the ¯ow is strongly
3-D, requiring computationally intensive calculations to obtain accurate predictions of the corresponding heat

transfer rates. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The main objective of this investigation is to analyze

the e�ect of buoyancy forces on the basic structure of

the laminar ¯ow in the space between a pair of disks

corotating in a ®xed cylindrical enclosure. This is done

by numerically solving the coupled momentum and

energy equations for the case of an incompressible,

non-isothermal ¯uid. The isothermal ¯ow case was pre-

viously investigated by the authors [1] for the enclosed

corotating disk pair (ECDP) geometry. Here attention
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is paid to the scaling and prediction of heat transfer

rates for a range of conditions of practical interest,
including high speeds of rotation. A sketch of the
con®guration investigated is shown in Fig. 1. The ge-

ometry and boundary conditions match those con-
sidered in [1] except for the imposition of a tempera-
ture variation by setting the bottom and top disks at

uniform temperatures Tb and Tt, respectively, with

Tb>Tt, while treating the cylindrical wall as adiabatic.

It should be noted that the present problem is di�erent
from the non-isothermal ¯ow in a rotating cavity or in
rotor-stator systems both of which have been

thoroughly investigated in recent years [2±5].
The e�ect of moderate buoyancy forces on ECDP

¯ow will be assessed within the range of Reynolds

numbers 0EReE105, approximately. With reference to

Nomenclature

Ac acceleration ratio, g/O2R2

g acceleration of gravity
h local heat transfer coe�cient, Eq. (11)

H interdisk spacing
k ¯uid thermal conductivity
L length of the square side in the benchmark problem of Section 3

nx, ny number of calculation nodes in the benchmark problem of Section 3

Nu, Nu local and average Nusselt numbers, Eqs. (10) and (11)
P, P ', P0 dimensional, modi®ed, and non-dimensional pressure, see Eqs. (1) and (2)
Pr Prandtl number, n/a
q heat ¯ux at the disk surface, Eq. (11)

r ' non-dimensional radial coordinate (rÿR1)/(R2ÿR1)
r, R dimensional and non-dimensional radial coordinate, see Eq. (3)
Ra Rayleigh number, geH 3/na
Rac critical Rayleigh number for the onset of Rayleigh±BeÂ nard convection
RaO rotational Rayleigh number, Re 2 e Pr=O2eR 4

2/na
Re Reynolds number, OR 2

2/n
R1, R2 internal and external disk radius, respectively
S height to radius space ratio, H/R2

t time
Ta Taylor number, 4O2H 4/n 2

T, T0 local and bulk ¯uid temperature, respectively
Tb, Tt temperature of the bottom and top disks, respectively
Ts temperature at the disk surface

u, U dimensional and non-dimensional axial velocity component, see Eq. (3)
T ' dimensionless ¯uid temperature, see Eq. (3)
v, V dimensional and non-dimensional radial velocity component, see Eq. (3)

w, W dimensional and non-dimensional circumferential velocity component, see Eq. (3)
z, Z dimensional and non-dimensional axial coordinate, see Eq. (3).

Greek symbols
a ¯uid thermal di�usivity

b thermal expansion coe�cient
e thermal Rossby number, b(TbÿTt)
y circumferential coordinate (radians)

l wavelength of the Rayleigh±BeÂ nard rolls, de®ned as the ratio between twice the average roll width
and H

lc wavelength of the rolls at the onset of Rayleigh±BeÂ nard convection

n ¯uid kinematic viscosity
r, r0 local and bulk ¯uid density, respectively
t non-dimensional time, Eq. (3)
O angular velocity of the disks and hub.
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Fig. 1, the Reynolds number is de®ned as Re=OR 2
2/n,

where R2 is the disk radius, O is the angular velocity

of the disks and hub, and n is the kinematic viscosity

of the ¯uid. The Boussinesq approximation is

employed in the conservation equations. Results cover

the interdisk space ratio range, 0.05ES=H/R2E0.20,

with special attention paid to S=0.091 because it has

been widely studied in the literature on ECDP ¯ows

[6±8].

Di�erent ¯ow regimes and heat transfer character-

istics are expected for di�erent ranges of the Reynolds

number, depending on which terms dominate the con-

servation equations. At very low Reynolds numbers,

free convection, usually known as Rayleigh±BeÂ nard

convection for unstably strati®ed ¯ows, arises in the

form of an organized cross-stream motion which sig-

ni®cantly increases the heat transfer rate. Literature

reviews on Rayleigh±BeÂ nard convection are available

in the literature; see, for example, Koschmieder [9].

Only some relevant aspects of the subject are con-

sidered in Section 4.1 to establish the proper compari-

sons. It is well-known that Rayleigh±BeÂ nard

convection decays as rotation increases [10]. As dis-

cussed in Section 4.2, such decay is accompanied by

the appearance of both centrifugally-induced buoyancy

and a strong shear at the enclosure wall. It is the wall-

shearing of the ¯uid that induces the cross-stream

motion typical of the isothermal ECDP ¯ow [6].

Beyond a certain value of the Reynolds number, free

convection e�ects become negligible and one should

observe the main characteristics of isothermal ECDP

¯ow. Non-isothermal ECDP ¯ow has been investigated

by the authors [11] in a range of Reynolds numbers

where the ¯ow remained axisymmetric (2-D). They

showed that centrifugally-induced buoyancy exerts sig-

ni®cant e�ects on the structure of the ¯ow. As in the

isothermal case, increasing the Reynolds number leads

to the transition from a 2-D to a 3-D non-isothermal

ECDP ¯ow, discussed in Section 4.3 below. However,
it has been shown recently [1] that the isothermal 3-D

ECDP ¯ow has one of two structures, depending on
the values of S and Re. Such a distinction also holds
here for the non-isothermal ¯ow and is relevant to the

prediction of heat transfer rates as shown in Sections
4.4 and 4.5.
The remainder of this paper is divided as follows.

The conservation equations and relevant characteristic
scales are presented in Section 2. The main features of
the numerical algorithm and the e�ects of grid size on

the accuracy of the calculations are discussed in
Section 3. Results for the di�erent ¯ow regimes out-
lined above are presented in Sections 4.1±4.4.
Predicted heat transfer rates are presented in Section

4.5 where they are compared to previous analysis. The
e�ects of the aspect ratio, S, and the Prandtl number
on the interdisk heat transfer are also discussed in

Section 4.5. Conclusions are given in Section 5.

2. Conservation equations and scaling

For purposes of calculation, the ¯uid is assumed to
be incompressible and Newtonian and the e�ect of

density variation is accounted for through the
Boussinesq approximation [12]. It is especially con-
venient in the present case to write the conservation

equations in the rotating frame of reference, as ad-
ditional buoyancy forces arise from the interaction
between inertial forces and density gradients. By de®n-

ing the modi®ed pressures

P 0 � Pÿ r0gz �1�

P0 � �P 0 ÿ 1=2O2R2
2�=r0O2R2

2 �2�

and the dimensionless variables

U � u=OR2; V � v=OR2; W � w=OR2;

T 0 � �Tÿ T0�=DT; Z � z=R2; R � r=R2;

t � Ot

�3�

the conservation equations for mass, momentum and

energy may be written as

@U

@Z
� @V
@R
� V

R
� 1

R

@W

@y
� 0 �4�

DU

Dt
� ÿ@P0

@Z
� 1

Re
r2U� AceT 0 �5�

Fig. 1. Schematic of the geometry investigated. In all the

cases R2/R1=1.862. The bottom disk (z=0) is set at a uni-

form temperature Tb higher than that of the top disk, Tt, and

the initial bulk ¯uid temperature is taken as T0=300 K.

J. Herrero et al. / Int. J. Heat Mass Transfer 42 (1999) 3291±3306 3293



DV

Dt
� ÿ@P0

@R
� 1

Re
r2Vÿ ReT 0 � �1ÿ eT 0��2W

�W 2=R� �6�

DW

Dt
� ÿ@P0

@y
� 1

Re
r2Wÿ �1ÿ eT 0��2V� VW=R� �7�

DT 0

Dt
� 1

Re Pr
r2T 0: �8�

In Eqs. (2)±(8), T0 is the bulk ¯uid temperature, r0 is
the ¯uid density evaluated at the temperature T0, O is

the angular velocity of the disks and hub, and u, v, w
are the respective velocity components in the axial (z ),
radial (r ), and circumferential (y ) coordinate direc-

Fig. 2. Calculations on several grids for the test case consisting of a square enclosure heated along one vertical side for Ra=106.

Three of the grids have a uniform spacing of d/L=1/20, 1/40 and 1/60, in order of increasing re®nement. The most accurate predic-

tions are obtained for a non-uniform grid with nx=ny=61. For this grid, the spacing grows linearly from a minimum of d/L=0.01

close to the wall up to a maximum of d/L=0.025. Calculated contours of the x-velocity component are presented in (a) while the

corresponding temperature distributions are shown in (b).
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tions. The Prandtl number is de®ned as the ratio
between the ¯uid kinematic viscosity and thermal di�u-

sivity, Pr=n/a. The additional dimensionless group,
Ac=g/O2R2, in Eq. (5) represents the ratio between
the gravitational and centrifugal accelerations. Note
that the mean centrifugal term in Eq. (6) has been in-

corporated into the modi®ed pressure. The other force
that arises in the rotating frame of reference is the
Coriolis force, which couples the radial and circumfer-

ential components of motion. The linearization of the
density in the source terms of Eqs. (5)±(7) leads to the
explicit appearance of buoyancy forces. Note that in

Eqs. (5)±(7) density is linearized not only in the gravity
term but also in the Coriolis and centrifugal force
terms. For a discussion of the conditions that guaran-

tee the validity of the Boussinesq approximation the
reader is directed to Gray and Giorgini [12] and
FroÈ lich et al. [13]. Because in this study the product
e=b(TbÿTt) is never larger (in absolute value) than

e=0.1, the approximation holds.
Relative to the rotating frame of reference, the

boundary conditions used to solve Eqs. (4)±(8) are as

follows:

u � 0, v � 0 and w � 0 along all rotating surfaces �9a�

u � 0, v � 0 and w � ÿOR2

at the fixed enclosure wall
�9b�

T � Tb for z � 0 �bottom disk� �9c�

T � Tt for z � H �top disk� �9d�

�@T=@ r� � 0 for r � R1 and r � R2

�adiabatic hub and enclosure surfaces�:
�9e�

Note that when free convection dominates the ¯ow

and heat transfer, di�erent scales must be used for the
velocity vector and time, namely V=v/( geH )1/2 and
t=ta/H 2 [9]. The Rayleigh number, commonly used in

free convection studies, does not appear explicitly in
Eqs. (5)±(8) but can be expressed as a combination of

the dimensionless groups de®ned above (Ra=Re 2 Pr
AceS 3). Another parameter used frequently in this type
of ¯ow is the Taylor number which can be expressed
as Ta=4 Re 2 S 2. However, the rotational Rayleigh

number, RaO, de®ned in the Nomenclature, should be
used in ¯ows dominated by centrifugal buoyancy, e.g.,
in rotating cavities [2]. Local and surface-averaged

heat transfer rates are expressed in the form of the
Nusselt number, Nu=hH/k, where k is the thermal
conductivity of the ¯uid and h is the heat transfer coef-

®cient, computed on the basis of either the local or the
averaged temperature gradient at the disk surface.

3. Numerical method

Calculations have been carried out using the
CUTEFLOWS numerical algorithm. The main features

of the code are discussed in [1] and [8], where the nu-
merical uncertainty associated with predicting isother-
mal ECDP ¯ows is assessed. The code is second-order
accurate in space and time and has been tested success-

fully with respect to two benchmark backward-facing
step problems [14,15]. Even though these tests show
the ability of the code to properly predict the ¯ow and

heat transfer in mixed convection problems, additional
testing has been carried out to further guarantee the
correctness of the present results. For this, the well-

known problem of buoyancy-driven ¯ow in a 2-D
square enclosure has been selected. Benchmark results
for this free convection problem have been reported by
De Vahl Davis [16] whose nomenclature and scales are

used to present the test results.
Figs. 2(a) and (b), respectively, show contours of the

calculated horizontal velocity component and tempera-

ture on di�erent grids for the most challenging case
with a value of the Rayleigh number Ra=106. These
plots show that even the coarsest grid, with a uniform

spacing of h/L=1/20, yields qualitatively good results.
A more quantitative comparison with De Vahl Davis'
results is provided in Table 1. Except for the distri-

Table 1

Comparison of results on di�erent grids with the benchmark solution presented by De Vahl Davis [16]. The Rayleigh number is

Ra=106. The nomenclature and variable scaling are taken from [16]. The symbol %E refers to the percentage deviation of the

quantities predicted with respect to the benchmark values reported in [16]

n h/L umax %E wmax %E Nuav %E Numax %E

21 1/20 68.80 6.45 243.6 11.1 10.29 16.7 20.64 15.1

41 1/40 65.33 1.08 218.6 ÿ0.35 9.046 2.60 19.69 9.85

61 1/60 64.94 0.48 217.3 ÿ0.94 8.890 0.83 18.56 3.54

61 Ð 64.92 0.45 219.6 0.11 8.843 0.29 17.86 ÿ0.36
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bution of the local heat transfer rates on the hot wall,
a uniform grid with h/L=1/60 yields good results. At

Ra=106 the wall boundary layers are very thin and
the peak in the pro®le of the local Nusselt number
occurs very near the horizontal wall. A di�erent non-

uniform arrangement of the nx=ny=61 nodes leads to
improved predictions in Table 1. The key point is that
the latter grid is ®ne enough near the wall, having ®ve

nodes embedded in the thermal boundary layer.
The requirement of a re®ned grid close to a solid

boundary has been adopted in the present investigation

in those calculations corresponding to the convection
dominated regime, where the proper characterization
of the disk Ekman layers is critical. The grids im-
plemented in the present work to characterize the non-

isothermal ECDP ¯ow in the forced-convection regime
are equivalent to those employed in [1] for the isother-
mal case. An exception is made for the calculations

with Prandtl numbers higher than Pr=0.76. For these
cases the asymptotic dependence of the thermal bound-
ary layer thickness on Pr 1/3 is accounted for. As in [1],

present calculations were generally started from the in-
itial condition of a motionless ¯uid (in the ®xed frame
of reference) at a uniform temperature. The most

intensive, 3-D calculations have generally been started
from the corresponding previously calculated isother-
mal ¯ow.

4. Results and discussion

Calculations have been carried out within the range
of parameters 0EReE105, 0.05ESE0.2, and eE0.1.

The (Ac Re 2) product was constant and equal to 674.
Most of the results presented correspond to air with a
Prandtl number Pr=0.76. Several calculations at
higher values of Pr have also been carried out within

the forced convection regime in order to establish the
e�ect of the Prandtl number on the overall heat trans-
fer rates. The di�erent ¯ow regimes observed as a

function of the Reynolds number are analyzed in
Sections 4.1±4.4 while the predicted heat transfer rates
are discussed in Section 4.5.

4.1. The limit of zero rotation: Rayleigh±BeÂnard
convection

Any rotation-dependent e�ects are obviously absent
in the limit of Re 4 0 where only free convection, or
Rayleigh±BeÂ nard convection, drives the ¯ow and heat

transfer. The onset of free convection has been the
subject of considerable research [9] and calculations of
the ¯ow near this condition are useful to further test

the code. The typical roll pattern presented in Fig. 3(a)
has been obtained in a calculation with e=0.1 and
S=0.091 (Ra=2280) on a uniformly spaced 40� 74 (z,

r ) grid. For the sake of simplicity, only the axisym-

metric mode of Rayleigh±BeÂ nard convection has been
considered. An analysis on the subject of the preferred
mode at the onset of thermal convection in a cylin-

drical container may be found, for instance, in the
paper by Buell and Catton [17]. The axisymmetric
mode also presents the nice feature, shown by

Chandrasekhar [10], that both the value of the critical
Rayleigh number and the 2-D ¯ow pattern at the onset

are the same for any ¯uid, that is, they are indepen-
dent of the Prandtl number. This critical value should
be Rac=1708 in the limit of a very thin ¯uid layer

(S4 0).
The ®rst question is whether the pattern of ®ve rolls

in Fig. 3(a) is appropriate for the conditions examined.
Chandrasekhar showed that the average wave-length
of the 2-D roll pattern at onset is lc=2.016. The

slightly supercritical pattern (Ra=2280>Rac) of Fig.
3(a) yields l=2.04 2 0.1 by simple averaging, and
l=2.0720.1 using the correction for cylindrical geo-

metries suggested by Koschmieder and Pallas [18].
Both values of l are in good agreement with the theor-

etical one.
A second valuable point is the prediction of the criti-

cal Rayleigh number, Rac. It was found, for the geo-

metry sketched in Fig. 1, that Rayleigh±BeÂ nard
convection ®rst set in at about Rac=1800 for
S=0.091. The analysis by Buell and Catton [17]

suggests that the critical value should be considerably
lower, about 1720ERacE 1740 for the axisymmetric

mode, yet the use of much ®ner computational grids
yielded no signi®cant di�erence in the predicted Rac
value. The reason for this apparent discrepancy is

attributed to the fact that Buell and Catton dealt with
the case of a cylinder; that is, R1=0 in the context of
Fig. 1. In support of this interpretation, calculations

have also been performed for a geometry with R1=0
and S=0.097, matching that in the experiments of

Koschmieder [19]. The roll pattern at Ra=1725, the
lowest Ra value at which free convection has been nu-
merically detected in this set of runs with R1=0, is

shown in Fig. 3(b) for a calculation on a 40� 100 (z,
r ) grid. The number of rolls is in agreement with the
ten roll axisymmetric pattern reported by Koschmieder

[19] at the onset of convection. More important, the
predicted critical Rayleigh number approaches the

theoretical limit for S=0 given by Chandrasekhar [10].
Thus, it is shown that the presence of an inner cylin-
drical wall has a stabilizing e�ect on the axisymmetric

mode of thermal convection.
Another quantity commonly used to compare theory

with experiments or calculations is the initial slope of
the heat transfer curve, de®ned as {Ra(Nuÿ1)}/
(RaÿRac) in studies of Rayleigh±BeÂ nard convection.

This is the value of the slope just beyond the onset of
free convection. SchuÈ ler et al. [20] showed analytically
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that, for a steady 2-D roll pattern in a plane geometry,
the initial slope of this curve depends on the Prandtl

number and is equal to 1.39 for Pr=0.76. A value of
the slope of 1.35, close to the theoretical prediction, is
obtained in present calculations for the conditions of
Fig. 3(a).

4.2. Mixed convection at low Reynolds numbers

The decay of free convection with increasing ro-
tation is accompanied by a progressive increase of the

shear stress in the vicinity of the ®xed enclosure wall.
As a consequence, the cross-stream pattern typical of
ECDP ¯ows, with two counter-rotating vortices near

the outer wall [8], eventually emerges. Also, with
increasing rotation centrifugal buoyancy sets in. The
combined action of these two e�ects is re¯ected in the
cross-stream ¯ow patterns, respectively, shown in Figs.

4(a) and (b) for 2-D calculations with Re=1371
(O=20 rpm) and Re=2742 carried out on 40� 74 (z,
r ) grids.

When compared to the non-rotating case, Fig. 3(a),
the strength of the Rayleigh±BeÂ nard rolls has in gen-
eral been dampened by the Coriolis force which

opposes any radial motion [see Eq. (6)]. The centrifu-
gal buoyancy term, as shown in previous experiments
and analysis [19,21,22], favors clockwise cross-stream

rotation and opposes anticlockwise cross-stream ro-
tation. Note that the third roll in Fig. 4(a) retains the

same strength as the third roll in Fig. 3(a), while the
two anticlockwise rolls are considerably weaker. Note
also in Fig. 4(a) that the e�ects of shear at the enclo-
sure wall are already weakly present in the form of a

small counter-clockwise roll that arises at the lower
right corner. Such e�ects manifest themselves more
clearly in the ¯ow pattern of Fig. 4(b). The pair of

counter-rotating cross-stream vortices near the outer
cylindrical wall is already present in this plot. The
Rayleigh±BeÂ nard rolls have become very weak at

Re=2741, to the point that only the two innermost
rolls remain as independent entities in Fig. 4(b). The
result of weakening free convection by increasing the
disk speed of rotation is to progressively reduce the

transport of heat from the bottom to the top disk.
This is re¯ected in the shape of the heat transfer curve
presented in Subsection 4.5.

4.3. Forced convection regime: wavy-3-D ¯ows

When the Reynolds number is increased to values
larger than about 105 for S=0.091, Pr=0.76, and

e=0.1, free convection vanishes and the characteristics
of the resulting ¯ow asymptote towards those of the
isothermal ECDP case. Here we discuss how centrifug-

Fig. 3. Results for the zero rotation limit, Re=0. The Rayleigh±BeÂ nard roll pattern obtained for the geometry of Fig. 1 in a 2-D

calculation with Pr=0.76, S=0.091 and Ra=2280 is shown in (a). The axisymmetric solution obtained in the case of a cylindrical

container with R1=0, Pr=0.76, S=0.097 and Ra=1710 is shown in (b). The number of computational nodes used in these calcu-

lations is 40� 74 and 40� 100 (z, r ), respectively. In both plots the stream-function is made dimensionless using a reference ¯ow

rate consisting of the product between the typical velocity scale, ( geH )1/2 and the disk surface area, p(R 2
2ÿR 2

1).
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ally-induced buoyancy alters the basic 3-D structure of

the isothermal ECDP ¯ow. The results presented corre-
spond to a unique value, e=0.1, of the dimensionless
temperature di�erence. The present buoyancy-related

e�ects are also observed, although to a lesser extent, in
calculations with lower values of e. As a general rule,
the in¯uence of centrifugal buoyancy decays linearly
with decreasing e.
As observed for the isothermal case [1,8,23], the

buoyancy-a�ected axisymmetric (2-D) ¯ow becomes 3-
D at a large enough value of the Reynolds number.

The presence of moderate buoyancy forces (e=0.1)
produces very little change in the transition Reynolds
number from 2-D-steady to 3-D-unsteady ECDP

¯ows. The 3-D ¯ow analyzed in this section corre-
sponds to the type arising after a 2-D±3-D Hopf bifur-
cation, previously analyzed in the isothermal case by

Humphrey et al. [8]. These authors reported a circum-
ferentially periodic, 3-D ECDP ¯ow, characterized by
a circumferential waviness of the pair of ECDP cross-
stream vortices. These vortices are toroidal in shape

before the 2-D±3-D transition. At a critical value of
the Reynolds number they acquire circumferentially
periodic oscillations in the axial direction and alternate

periodically in crossing the axial midplane to invade
the opposite half of the interdisk space. Humphrey et
al. [8] showed that such an isothermal 3-D ¯ow dis-

played a shift-and-re¯ect symmetry with respect to the

interdisk midplane.
Figs. 5(a±d) show the cross-stream ¯ow and the cor-

responding temperature distribution at two (z, r )

planes located at y=0 and y=p/4, for a 3-D calcu-
lation with S=0.091, Re=20,565 and e=0.1. This cal-
culation, carried out on a 40 � 74 � 84 (z, r, y ) grid,
was started from the ending point of the corresponding

isothermal calculation [1], where a quasi-periodic ¯ow
with circumferential wave-number m=4 was obtained.
The plot in Fig. 5(a) provides a picture of the instan-

taneous cross-stream ¯ow at a y location correspond-
ing to a maximum negative axial velocity in the
interdisk midplane at r '=0.80. In the isothermal case,

the cross-stream pattern at the (z, r ) plane with y=p/4
would be the mirror re¯ection, with respect to the
axial midplane, of that shown in Fig. 5(a) [8]. This is

not the case for the present non-isothermal ¯ow. As
shown in Fig. 5(b), because centrifugal buoyancy
favors the cross-stream circulation in the upper vortex,
the symmetry properties with respect to the midplane

are lost.
The respective temperature distributions are shown

in Figs. 5(c) and (d). These plots suggest that the out-

¯ows along the disk Ekman layers are responsible for
most of the heat transfer between disks. The isotherms
are comparatively closer near the disk surface in those

Fig. 4. Streamline patterns obtained in 2-D calculations on a 40 � 74 (z, r ) grid for Re=1371 (a) and Re=2742 (b). Except for

where otherwise indicated, in this and the following ®gures the ¯ow parameters are S=0.091, e=0.1 and Pr=0.76. The stream

function has been non-dimensionalized as explained in the caption to Fig. 3.
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regions of stronger radial out¯ow. The hot (up) and
cold (down) ¯ows along the enclosure wall meet at a

certain point and a high rate of heat transfer is
attained across the inwards jet between cross-stream

vortices for r '>0.90, as re¯ected by the close isotherms
in Figs. 5(c) and (d). The corresponding plot of the

isotherms in the (y, r ) plane, not shown here, is in
agreement with the local Nusselt number distribution

Fig. 5. Three-dimensional calculation of the ¯ow for Re=20,565, S=0.091 and e=0.1 on a 40� 74� 84 (z, r, y ) grid. Velocity vec-

tors and streamlines, based on the axial and radial velocity components only, are shown in (a) and (b) for two cross-stream (z, r )

planes with y=0 and y=p/4, respectively. The corresponding distributions of the dimensionless temperature, T '=(TÿT0)/(TbÿTt),

are, respectively, shown in (c) and (d).
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given in Fig. 8(a). This is discussed in Section 4.5,
where the relation between the 3-D structure of the

¯ow and the overall heat transfer rates is explained.
In the isothermal case, ¯uid in the inner core, the

region with r ' E 0.5 for S=0.091, was observed to

rotate as a solid body with the disks and hub [8]. The
isotherms in Figs. 5(c) and (d) are slightly compressed
upwards close to the hub, thus suggesting the presence

of some cross-stream motion within the inner core.
Such a circulation is attributed to centrifugal buoyancy
but exerts very little in¯uence on the overall heat trans-

fer rate. Fig. 6 shows the axial pro®les of the three
(circumferentially averaged) velocity components at the
radial location with r '=0.30. The pro®les in Fig. 6 are
almost identical to those reported in [11] for the case

of circulation induced by centrifugal buoyancy inside a
rotating cavity. Far away from solid boundaries,
departures from solid body rotation within the inner

core are insigni®cant, both in the averaged and in the
local ®elds. Also in agreement with previous work,
peak values of v and w in the pro®les at r '<0.4 scale

well with OR 2e. Thus, in Figs. 5(a) and (b) the cross-
stream motion near the enclosure wall is, on average,
1/e times stronger than in the inner core.

4.4. Forced convection regime: asymmetrical ¯ows

The isothermal ECDP ¯ows investigated by
Humphrey et al. [8] correspond to a unique interdisk
spacing to disk radius ratio, namely S=0.091. For this

aspect ratio, transition from a 2-D-steady into a 3-D-
unsteady, isothermal ECDP ¯ow always occurs
through a Hopf bifurcation yielding a ¯ow of the type

discussed in Section 4.3. Iglesias and Humphrey [23]
have recently shown that, when a higher geometry
ratio value of S=0.137 is considered for the ECDP

geometry of Fig. 1, a pitchfork bifurcation between
two di�erent types of isothermal, axisymmetric, steady
¯ows is detected in 2-D calculations. The 2-D ¯ow
resulting from such a bifurcation displays a strong

breaking of symmetry with respect to the interdisk
midplane, meaning that one of the toroidal cross-
stream vortices becomes considerably larger than the

other (see Fig. 8 in [23]). Iglesias and Humphrey [23]
also reported that such an asymmetrical or symmetry-
breaking ECDP ¯ow was not realizable in 3-D calcu-

lations. Notwithstanding, the present authors have
shown [1] that an isothermal symmetry-breaking 3-D
ECDP ¯ow is attainable at the higher aspect ratio of

Fig. 6. Axial pro®les of the circumferentially averaged velocity components at r '=(rÿR1)/(R2ÿR1)=0.30 for the same 3-D calcu-

lation as in Fig. 5. In this plot velocity is non-dimensionalized according to Eq. (3).
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S=0.18. In the present non-isothermal case, the sym-

metry-breaking 3-D ECDP ¯ow is also the preferred
structure for S=0.18 at high enough Reynolds num-
bers. As is the case in the 2-D±3-D Hopf bifurcation

at lower values of S, it has been found that the pre-

sence of centrifugal buoyancy does not signi®cantly
alter the location of the boundary for the 2-D±3-D
transition at S=0.18. Interestingly, a new ¯ow bifur-

Fig. 7. Three-dimensional calculation for Re=82,270, S=0.091 and e=0.1 on a 50� 90 � 84 (z, r, y ) grid. Velocity vectors and

streamlines, based on the axial and radial velocity components only, are shown in (a) and (b) for two cross-stream (z, r ) planes

with y=0 and y=7p/32, respectively. The corresponding dimensionless temperature distributions are respectively shown in (c) and

(d). Temperature is non-dimensionalized as in Fig. 5.
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cation has been detected in the present calculations. It

consists of a transition, after an increase in Re, from a
3-D ¯ow as that of Section 4.3 towards a di�erent type
of 3-D ¯ow displaying all of the characteristics of the
isothermal symmetry-breaking 3-D ECDP ¯ow

reported in [1]. It is remarkable that such a 3-D±3-D
¯ow bifurcation is not detected in the isothermal case.
This means that the non-isothermal 3-D ECDP ¯ow of

the `symmetry-breaking' type is stable at values of the

[Re, S ] pair where the corresponding isothermal sym-

metry-breaking 3-D ¯ow is not.
For illustration, an example is given for the case

with Re=82,270, e=0.1 and the same value of
S=0.091 as in Section 4.3 to facilitate a proper com-

parison. For this set of parameters, a 3-D ¯ow of the
`symmetry-breaking' type is obtained regardless of the
initial conditions and history of the calculation. Figs.

7(a) and (b) show the cross-stream motion at two

Fig. 8. Distribution of the local Nusselt number, de®ned in Eq. (11), along the top disk surface for the 3-D calculations of Figs. 5

and 7.
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di�erent (z, r ) planes, namely with y=0 and 7p/32, for
a 3-D calculation on a 50� 90� 84 (z, r, y ). The ¯ow

in this case evolves on its own to attain a circumferen-
tial periodicity with m=5. The plots in Figs. 7(a) and
(b) illustrate one of the main features of symmetry-

breaking type ECDP ¯ows. This is the presence of
in¯ows and out¯ows between the outer region and the
inner core. This type of ECDP ¯ow features a third,

highly 3-D, intermediate region between the inner core
and the pair of counter-rotating cross-stream vortices
[1]. In those y-locations with the strongest radial out-

¯ows, as in Fig. 7(a), the ECDP vortices are com-
pressed against the enclosure wall. The opposite is true
in situations with strong radial in¯ows, as can be seen
in Fig. 7(b). The above characteristics of the ¯ow are

re¯ected in the respective cross-stream temperature dis-
tributions, shown in Figs. 7(c) and (d). Such an alter-
nating shrinking and enlargement of the ECDP cross-

stream vortices has an e�ect on the overall heat trans-
fer rates, as discussed below. The corresponding plot
of the isotherms in the (y, r ) plane, not shown here, is

in agreement with the local Nusselt number distri-
bution given in Fig. 8(b), discussed below.

4.5. Heat transfer rates

The overall instantaneous rate of heat transfer
between the two disks is calculated by integrating the

local rate of heat transfer over either disk surface. This
results in the instantaneous surface averaged Nusselt
number, Nu, given by

Nu �

�y�2p
y�0

�r�R2

r�R1

Nu�y,r�r dr dy

p�R2
2 ÿ R2

1�
: �10�

In this expression we imply the following relationships:

Nu�y,r� � h�y,r�H
k

; h�y,r� � q�y,r�
TS�y,r� ÿ T0

;

q�y,r� � ÿk
�
@T�y,r�
@z

�
S

�11�

where Nu and q are the instantaneous local values of
the Nusselt number and heat ¯ux, respectively, h is the
instantaneous local heat transfer coe�cient and TS

denotes the temperature at the disk surface, set as a
constant in the present study. Note that the above ex-
pression for Nu is based on the characteristic length H,

the interdisk spacing. In those calculations yielding a
steady ¯ow, the Nu values calculated for the bottom
and the top disk surfaces are identical at all times.

This is not the case when the ¯ow is unsteady.
However, time-averaged values of Nu for the two sur-
faces are very close, with di�erences less than 1%

attributed to the ®nite length of the instantaneous Nu
time records.

The question arises concerning how the values of Nu
obtained by the above procedure should scale with Re
and Pr for ECDP ¯ows. This is related to the well-

known case of heat/mass transfer from a free rotating
disk for which Levich [24] published a theory in 1942.
In this theory, which is based on boundary layer

assumptions, the idea is that the disk radius-based
local Nusselt number, Nur, can be expressed as

Nur � hr=k � f �Pr� Re0:5r �12�

where Rer denotes the local Reynolds number based
on the radial location r and f(Pr ) is a function given
by f(Pr )=0.62Pr 1/3, valid only in the limit of high

Prandtl numbers. Several re®nements to Levich's high
Prandtl limit solution were later introduced by, among
others, Sparrow and Gregg [25], Kreith et al. [26] and

Newman [27], and a comprehensive review of work
prior to 1966 is given by Ridford [28]. For the range
of Prandtl numbers explored in this work, we use the

more general equation for f(Pr ) derived analytically by
Liu and Stewart [29]

f �Pr� � Pr1=3�
1:61173� 0:4803

Pr1=3 ÿ 0:4870

� ;
Pr1=3r0:4870

�13�

which is consistent with Levich's asymptote for very

large values of Pr. Based on the above Eqs. (12) and
(13), a scale for the local Nusselt number as a function
of Pr and Re in ECDP ¯ows may be accordingly

expressed as follows:

Nu af �Pr�S Re0:5: �14�

Note that the aspect ratio S appears in Eq. (14)
because the Nusselt number is based on the interdisk

spacing, H. The bulk temperature, T0, is used here
instead of the ¯uid temperature outside the boundary
layer, as is usually the case in free-rotating disk ¯ows.

A further re®nement has been introduced to obtain the
corresponding scale for the surface averaged Nusselt
number, Nu. Eq. (10) is used to obtain the average
value of Nusselt over the whole disk surface, that is,

R1ErER2. However, not all of the disk surface is use-
ful from the point of view of heat transfer, as illus-
trated in Fig. 8(a) where the distribution of the Nusselt

number on the top disk surface is plotted for the same
3-D calculation as in Fig. 5. As might be anticipated
from Figs. 5(c) and (d), high local rates of heat trans-

fer between the disk surface and the ¯uid are restricted
to the outer part of the radial domain. The contri-
bution from the inner core, with local values of
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Nusselt even lower than the Nu=1 limit for pure con-
duction, is almost negligible when the ECDP ¯ow fully

attains the forced convection regime. Therefore, the
following scaling for Nu is proposed:

Nu af �Pr�g�S � Re0:5 �15�

where g(S ) represents S times the ratio between the
e�ective heat transfer area and the total disk surface

equal to p(R 2
2ÿR 2

1). Such a ratio has been included in
the g(S ) part of the scale because one can expect [1,23]
its value to increase with the geometry aspect ratio S.

Eq. (15) is applicable to Reynolds numbers corre-

sponding to the forced convection regime and is
restricted to isothermal disks.

A rough estimation for g(S ), namely g(S )=0.5 S,
works well in Fig. 9 for ECDP ¯ows with S=0.091.
The Re 0.5 asymptote is well reproduced in this plot
when the forced convection regime is fully attained.

Note that the 2-D±3-D ¯ow transition, detected at
about Re=16,000 for the non-symmetry breaking ¯ow
conditions of Fig. 5, does not produce any noticeable

break or change in the slope of the heat transfer curve
in Fig. 9. Also, the value of Nu [see Eq. (10)] for the
¯ow of Fig. 5 is very similar to the corresponding

value obtained from a 2-D calculation. It is also clear

Fig. 9. Dependence of the calculated Nusselt numbers on Re and Prandtl for the ECDP geometry with S=0.091. The dashed line

corresponds to the analytical scale based on the theory [24] of the rotating disk electrode. See the text for details.

Fig. 10. Variation of the predicted Nusselt number with the interdisk height to radius aspect ratio, S, and the Reynolds number,

Re, for the forced convection regime. The results in this plot correspond to Pr=0.76. Note the collapse of the data for all values of

Re when S>0.091.
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in Fig. 9 that Eq. (13) gives a fairly good prediction of
the dependence of Nu on Pr for ECDP ¯ows within

the forced convection regime. It must be mentioned
that while most calculations in this ®gure correspond
to cases with e=0.1, runs at Pr=76 were carried out

with a smaller e value, e=0.01, in order to rule out the
presence of free convection in calculations within the
Re range of interest, 104 < Re < 105. It has been

observed that, as a general rule, the presence of moder-
ate centrifugal buoyancy in ECDP ¯ows leads, within
the forced convection regime, to an increase in Nu by

a factor of roughly (1+e ) between the e=0 limit and
the maximum e=0.1 investigated in the present study.
It is not easy to establish a suitable general function

for g(S ) in Eq. (15). This is illustrated in Fig. 8(b) for

the 3-D calculation discussed in relation to Fig. 7
above. The Nu distribution at the top disk surface pre-
sents a pentagonal shape. As shown in [1], the polyg-

onal shape of the inner core is characteristic of the
`symmetry-breaking' 3-D ECDP ¯ows. The radial out-
¯ows and in¯ows, respectively, portrayed in Figs. 7(a)

and (b) give the pentagonal shape to the inner core in
Fig. 8(b). Because of the signi®cant change in the e�ec-
tive heat transfer area with respect to that of Fig. 8(a),

the predicted Nu value for the 3-D calculation of Fig.
8(b) is about 10% lower than the one obtained in the
corresponding 2-D run. Thus, a g(S ) value that is suit-
able for the `wavy' ECDP ¯ow discussed in Section 4.3

is not appropriate for the `symmetry-breaking' 3-D
¯ow of Section 4.4.
Several calculations at di�erent values of S and

Pr=0.76 have been performed to further investigate
the e�ect of the geometry on the heat transfer rates.
Calculations corresponding to S=0.18 were carried at

e=0.01 to make sure that free convection was absent
in the Re range of interest. Results in Fig. 10 show
that the asymptotic behavior Re 0.5 is attained at any S
value when the Reynolds number is high enough.

5. Conclusions

The ¯ow and heat transfer between a pair of disks
corotating in a ®xed cylindrical enclosure have been

investigated. Attention has been given ®rst to an analy-
sis of the di�erent physical phenomena and ¯ow
regimes that can arise depending on the dominant

terms in the conservation equations. Results reported
here illustrate the di�erent transitions that are
observed as the rotation speed of the disks is progress-
ively increased.

The discussion then focused on the di�erences
between isothermal and non-isothermal ECDP ¯ows.
The distinction between two types of 3-D ECDP ¯ow

also holds for the non-isothermal ¯ow. For the type of
¯ow of Section 4.3, previously investigated in the iso-

thermal case by Humphrey et al. [8], centrifugally-
induced buoyancy favors clockwise-rotating cross-

stream cells and opposes anticlockwise-rotating ones,
thus breaking the midplane shift-and-re¯ect symmetry
of the isothermal ¯ow. It is important to note, how-

ever, that such ¯ow is still di�erent from the type of 3-
D ECDP ¯ow previously labeled by the authors, for
the isothermal-case, as `symmetry-breaking'. The

ECDP ¯ow of the `symmetry-breaking' type, discussed
in Section 4.4, acquires a highly complex 3-D structure
and features a much larger departure from midplane

symmetry properties than that of Section 4.3.
It has also been shown that a transition between the

two types of 3-D ECDP ¯ows, already suggested in [1]
but not numerically detected in the isothermal case, is

realizable in the presence of moderate levels of cen-
trifugal buoyancy. Such a di�erent behavior between
isothermal and non-isothermal 3-D ECDP ¯ows is

explained as follows. A 3-D isothermal ECDP ¯ow of
the shift-and-re¯ect or `wavy' type [8] features a cir-
cumferential alternation of regions where cross-stream

motion in the upper-half dominates that in the lower
half, and vice versa. It is therefore di�cult for such a
3-D ¯ow to shift into a structure where either the

lower or the upper cross-stream vortex, depending on
the branch of the bifurcation selected, dominates the
cross-stream motion over the whole y-range. In the
non-isothermal `wavy' ¯ow case discussed in Section

4.3, the upper cross-stream toroidal vortex, favored by
centrifugal buoyancy, dominates the lower one. This
makes the bifurcation into the `symmetry-breaking'

type of 3-D ECDP ¯ow discussed in Section 4.4 much
easier.
The prediction of heat transfer rates between disks,

a subject of practical interest, has also been analyzed.
Using existing theory for the heat and mass transfer
from a freely rotating disk, a proper scaling for Nu as
a function of both Re and Pr has been proposed for

the case when the ECDP system operates within the
forced convection regime. It has been shown that, in
many cases, good predictions of the Nusselt number

may be obtained by performing 2-D (axisymmetric
¯ow) calculations. However, when the 3-D ECDP ¯ow
is not `wavy' but of the `symmetry-breaking' type,

intensive 3-D calculations are necessary to guarantee
accurate predictions of the overall heat transfer rates
between disks.
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